

DEVELOPMENT OF AN EUROPEAN QUANTITATIVE EUTROPHICATION RISK ASSESSMENT OF POLYPHOSPHATES IN DETERGENTS

Barbara M. de Madariaga; M. José Ramos, <u>José V. Tarazona</u>

BACKGROUND

- CEEP, within the voluntary initiative HERA, presented a risk assessment report on polyphosphates in detergents
- The risk estimation was based on a toxicity assessment following the TGD; the RAR stated that it was not possible to estimate the eutrophication risk.
- The CSTEE considered that the environmental risk of polyphosphates should be related to its contribution to the eutrophication risk and that the available information should be sufficient for conducting such assessment.
- This study is a follow up of this consideration, and has been funded by CEEP and conducted by Green Planet (a technological base spin-off company) and INIA (a Spanish public research institute)

A <u>significant undesirable disturbance</u> is a direct or indirect anthropogenic impact on an aquatic ecosystem that appreciably degrades the health or threatens the sustainable human use of that ecosystem

 Table 1: Significant undesirable disturbances that may result from accelerated growth of phytoplankton, macroalgae, phytobenthos, macrophytes or angiosperms

(a)Causes the condition of other elements of aquatic flora in the ecosystem to be moderate or worse

(a)Causes the condition of benthic invertebrate fauna to be moderate or worse

(a)Causes the condition of fish fauna to be moderate or worse

(a)Compromises the achievement of the objectives of a Protected Area for economically significant species

(a)Compromises the achievement of objectives for a Natura Protected Area

(a)Compromises the achievement of objectives for a Drinking Water Protected Area

(a)Causes a change that is harmful to human health (e.g. shellfish poisoning)

(a)Causes a significant impairment of, or interference with, amenities and other legitimate uses of the environment

(a)Causes significant damage to material property

The condition of phytoplankton, phytobenthos, macrophytes, macroalgae or angiosperms would not be consistent with good ecological status where, as a result of anthropogenic nutrient enrichment, changes in the balance of taxa had occurred that are likely to adversely affect the functioning of the ecosystem

Table 2: Examples of ecologically significant undesirable changes to the balance of taxa

- (a) An entire functional group of taxa, or a keystone taxon, normally present at reference conditions is absent;
- (a) A nutrient-tolerant functional group of taxa not present under reference conditions is no longer rare
- (a) A substantial change in the balance of functional groups of taxa has occurred;
- (a) A group of taxa, or a taxon, of significant conservation importance normally present at reference conditions is missing

Characteristics	Descriptors	Units and endpoints
Geographical identification	European Ecological Region River Basin Waterbody Name	name name name
Morphological and physico-chemical description	Waterbody Type Area Mean Depth Depth Classification Conductivity Temperature Dissolved Oxygen Secchi disk pH TP & TN annual average conc.	name ha Deep/Shallow μS/cm °C mg/L m - μg/L
Ecological variables	Trophic Status Dominant Species Ecosystem structure	OECD (1982) Most relevant Number of species and structure (per taxa group)
Effect endpoints	Chlorophyll a Algal blooms Shifts in Species Composition, Abundance, Structure: Phytoplankton, Invertebrates, Other aquatic flora, Other fauna Sediment organic matter Change in water quality Oxygenation conditions at hypolimnion Other specific local effects	μg/L yes / no yes / no Relevant changes Relevant changes yes / no yes / no Oxygenated, hypoxia, anoxia yes / no
Eutrophication Assessment	Rationale Ecologically Relevant Effects (ERE) ERE - semi quantitative discrimination	Direct & indirect effects yes / no from -3 to +3
Data Validation	Trend in the semi-quantitative classification MorphoEdaphic Index (MEI based on conductivity) followi	ng Vighi, and Chiaudani, 1985.

MATHEMATIC IMPLEMENTATION

Scenario	Units MEDITER	Figures RANEAN
Effect assessment distribution		2
PopulationDensity	person/ha	1,17
CatchmentArea	ha	1000000
RiverFlow	m ³ /s	640
LanduseArableLand	%	26
LandusePasture	%	26
LanduseForest	%	38
LanduseOther	%	10
ArableLand coefficient	kg/ha/year	0,66
Pasture coefficient	kg/ha/year	0,4
Forest coefficient	kg/ha/year	0,02
Other uses coefficient	kg/ha/year	0,2
P emission from Population	g/person/day	1,5
P emission from Detergents	g/person/day	0,36
Current P reduction at STP	%	20
Sites with non-good status	%	33

Scenario	Detergent contribution	TP conc.	Ecoregion&type	Difference between total risk and risk without detergents		
	%	µg/l	Class	Upper bound 1-p(TP G+)	Lower bound P(TP G-)	mlp(G- TP)
1a	13.1	465	Mediterranean	1.6	4.5	3.7
1b	13.1	465	At-N&C shallow	0.2	1.2	0.5
1c	26	546	Mediterranean	3.4	8.1	7.6
1d	26	546	At-N&C shallow	0.4	2.3	1
2a	13.1	232	Mediterranean	1.6	4.7	4.4
2b	13.1	232	At-N&C shallow	0.4	2.8	1.1
2c	26	273	Mediterranean	3.4	10.3	9.3
2d	26	273	At-N&C shallow	0.8	5.4	2
3a	8	255	Mediterranean	0.9	2.8	2.5
3b	8	255	At-N&C shallow	0.2	1.4	0.6
3c	16.8	282	Mediterranean	2	6.3	5.5
3d	16.8	282	At-N&C shallow	0.5	2.9	1.1
4a	9.6	212	Mediterranean	1.1	3.3	3.2
4b	9.6	212	At-N&C shallow	0.4	2.1	0.8
4c	19.8	239	Mediterranean	2.5	7.4	6.9
4d	19.8	239	At-N&C shallow	0.7	4.4	1.6
5a	9.9	154	Mediterranean	1.1	3	3.2
5b	9.9	154	At-N&C shallow	0.4	3.3	1.4
5c	20.4	174	Mediterranean	2.5	6.8	7.2
5d	20.4	174	At-N&C shallow	0.8	6.7	2.7

able ES.Z IVI	edian and arithme	etic mean values o	btained for the d	ifferent generic so	enarios.	
Deveneter	Detergent contribution	TP conc.	Difference between total risk and risk without detergents			
Parameter	0/		Upper bound	Lower bound	mlp(G-	
	70	μy/i	1-p(TP G+)	P(TP G-)	TP)	
		All scena	arios			
Median	15	247	0.85	3.85	2.6	
Arith mean	16	283	1.24	4.48	3.31	
		Mediterranean	scenarios			
Median	15	247	1.80	5.50	4.95	
Arith mean	16	283	2.01	5.72	5.35	
	At	lantic-N&Central s	hallow scenarios	;		
Median	15	247	0.40	2.85	1.10	
Arith mean	16	283	0.48	3.25	1.28	

Example	Catchment/Station	Detergent contribution	TP conc.	Difference between total risk and risk without detergents		
		%	µg/l	Upper bound 1-p(TP G+)	Lower bound P(TP G-)	mlp(G- TP)
1a	Tajo - Trillo	8.4	36	6	0.2	1.1
1b	Tajo - Trillo	5	36	3.4	0.1	0.6
2a	Tajo - Aranjuez	6.7	98	0.8	1.6	1.9
2b	Tajo - Aranjuez	3.8	98	0.4	0.9	1.1
3a	Tajo - Polan	13.9	1370	0	1	0
3b	Tajo - Polan	9.3	1370	0	0.6	0
4a	Tajo - Alcantara	18.3	295	2.2	7	6
4b	Tajo - Alcantara	13.7	295	1.6	5.2	4.4
5a	Ebro - Miranda	4.7	36	3.2	0.1	0.6
5b	Ebro - Miranda	2.6	36	1.7	0	0.3
6a	Ebro - Mendavia	11.4	166	1.4	3.6	3.9
6b	Ebro - Mendavia	7.2	166	0.8	2.2	2.4
7a	Ebro - Zaragoza	11	173	1.3	3.5	3.7
 7b	Ebro - Zaragoza	6.9	173	0.8	2.2	2.3
8a	Ebro - Tortosa	9.4	129	1.1	2.6	3.01
8b	Ebro - Tortosa	5.7	129	0.6	1.5	1.8

